Lecture 17 : Long run behaviour of Markov chains

STAT 150 Spring 2006 Lecturer: Jim Pitman Scribe: Vincent Gee

- Basic Case: S is finite
- Markov matrix is P
- Assume that for some power of P has all entries > 0: $\exists k$ such that $P^k(i, j) > 0 \forall i, j \in S$
- Such P is called regular
- Then (Theorem): \exists a unique stationary probability distribution π such that:
 - $\pi P = \pi$, meaning $\sum_i \pi_i P(i, j) \forall j \in S$
 - This π is then the limit distribution of X_n as $n \to \infty$, no matter what the initial distribution of X_0 i.e.
 - $\lim_{n \to \infty} P^n(i, j) = \lim_{n \to \infty} P_i(X_n = j) = \pi_j$ for all $j \in S$.
- Idea of most proofs:
 - Show that π exists
 - Show $\lim_{n \to \infty} P^n(i, j) = \pi_j$
 - Uniqueness of π is easy.
- Explicit representations of π
 - My favorite (not in text): let $T_i = \inf\{n : n > 1, X_n = i\}$ where $\inf \phi = \infty$.
 - Then $E_i(\#$ of visits to j before $T_i) = \frac{\pi_j}{\pi_i}$ where π is the unique invariant probability distribution
 - Notice: by \sum_j we get $E_i(T_i) = \frac{1}{\pi_i}$, hence
 - $\pi_i = \frac{1}{E_i(T_i)}$
This brings us to discussion of how to solve $\pi P = \pi$. In general, for complicated P, this can be a pain. But a simplifying method is often available: look for a reversible equilibrium. This may not exist, but if it does, it’s easy to compute.

Reversible Equilibrium

- Recall: $\pi = P\pi$ means for the Markov chain (X_0, X_1, \ldots) with transition matrix P that
- $X_0 \sim \pi \implies X_1 \sim \pi$
- That is $X_0 \xrightarrow{d} X_1$ (equality in distribution)
- Ordinary Equilibrium: $\implies X_n \xrightarrow{d} X_0$
- But sometimes, we also have Reversible Equilibrium
- $(x_0, x_1) \xrightarrow{d} (x_1, x_0)$ (equality of joint distributions)
- Look at the probability that either side has value (i, j) to derive the equations
- $\pi_i P(i, j) = \pi_j P(j, i)$ for all pairs of states i, j
- Note: if $|S| = N$, we used to have N equations and N unknowns.
- Now $\binom{N}{2} = \frac{N(N-1)}{2}$ equations, N unknowns
- Note that reversibility of 2 steps implies reversibility of n steps: $(x_0, x_1, \ldots, x_n) \xrightarrow{d} (x_n, \ldots, x_1, x_0)$

Example 1:

- Any random walk on an interval of integers which has only transitions of $+1, -1, 0$ can be solved with reversible equilibrium.
- e.g. on states $\{0, 1, 2\}$

$$P = \begin{bmatrix}
\frac{1}{3} & \frac{1}{2} & 0 \\
\frac{1}{3} & 0 & \frac{2}{3} \\
0 & 1 & 0
\end{bmatrix}$$

- Look for a reversible equilibrium:
- Start with generic π_0
- $\pi_0 \frac{1}{2} = \pi_1 \frac{1}{3} \implies \pi_1 = \pi_0 \frac{3}{2}$
- $\pi_1 \frac{2}{3} = \pi_2 1 \implies \pi_2 = \pi_1 \frac{2}{3} = \pi_0$
- $0 = 0$
Lecture 17: Long run behaviour of Markov chains

- Normalize: \(\pi_0 + \pi_1 + \pi_2 = 1 \)
- \(\pi_0 + \pi_0 \frac{3}{2} + \pi_0 = 1 \)
- \(\pi_0(1 + \frac{3}{2} + 1) = 1 \)
- \(\pi_0 = \frac{2}{7} \)
- \(\pi_1 = \frac{3}{7} \)
- \(\pi_2 = \frac{2}{7} \)

• Example 2:
 - Random walk on states in a circle. Take a circle with 5 points, with the probability of moving clockwise, \(p \), and the probability of moving counter clockwise is \(q \)
 - Easy to check that if \(\pi \) is uniform then \(\pi P = \pi \)
 - Reversible only if \(p = q = 1/2 \).

• Example 3:
 - Random walk on \(\{0, 1, 2, \ldots\} \)
 - reflection at 0: \(P(0, 1) = 1 \)
 - \(P(i, i + 1) = p \) for \(i \geq 1 \)
 - \(P(i, i - 1) = q \) for \(i \geq 1 \)
 - Cases:
 * Transient if \(p > q \)
 * Null-recurrent if \(p = q \)
 * Positive Recurrent (similar behavior to regular) if \(p < q \)
 - \(\pi_i = \frac{1}{E_i(\pi_i)} \)
 - For the case: \(p < q \), find there is a unique solution of \(\pi P = \pi \), \(\sum_j \pi_j = 1 \).
 - Find it as a reversible equilibrium:
 * \(\pi_0 1 = \pi_1 q \implies \pi_1 = \frac{\pi_0 q}{q} \)
 * \(\pi_1 p = \pi_2 q \implies \pi_2 = \frac{\pi_0 p}{q} \)
 * \(\pi_n = \pi_0 \frac{1}{q} \left(\frac{p}{q} \right)^{n-1} \)
 * \(1 = \sum_{n=0}^{\infty} \pi_n = \pi_0 + \frac{\pi_0}{q} + \frac{\pi_0}{q} \left(\frac{p}{q} \right) + \frac{\pi_0}{q} \left(\frac{p}{q} \right)^2 + \ldots = \pi_0 (1 + \frac{1}{q} - \frac{1}{1 - p/q}) \)