• Poisson processes

General idea: Want to model a random scatter of points in some space.

− # of points is random
− locations are random
− want model to be simple, flexible and serve as a building block

Variety of interpretations:

− Natural phenomena such as weather, earthquakes, meteorite impacts
− points represent discrete “events”, “occurrences”, “arrivals” in some continuous space of possibilities
− Continuous aspect: location/attributes of points in physical space/time
− Discrete aspect: counts of numbers of points in various regions of space/time give values in $\rightarrow \{0, 1, 2, 3, \ldots\}$

Abstractly: A general, abstract space S. Suitable subsets B of S for which we discuss counts, e.g. intervals, regions for which area can be defined, volumes in space, ...

Generically $N(B)$ should be interpreted as the number of occurrence/arrivals/events with attributes in B. Then by definition, if B_1, B_2, \ldots, B_n are disjoint subsets of S, then

$$N(B_1 \cup B_2 \cup \cdots \cup B_n) = N(B_1) + \cdots + N(B_n)$$

Simple model assumptions that lead to Poisson processes:

(1) Independence: If B_1, B_2, \ldots, B_n are disjoint subsets of S, then the counts $N(B_i)$ are independent.

(2) No multiple occurrences. Example: we model #’s of accidents, not #’s of people killed in accidents, or numbers of vehicles involved in accidents.
It can be shown in great generality that these assumptions imply the Poisson model: \(N(B) \sim \text{Poisson}(\mu(B)) \) for some measure \(\mu \) on subsets \(B \) of \(S \). If \(\mu \) is \(\lambda \) times some notion of length/area/volume on \(S \), then the process is called \textit{homogeneous} and \(\lambda \) is called the rate. In general, \(\mu(B) \) is the expected number of points in \(B \). In the homogeneous case, the rate \(\lambda \) is the expected number of points per unit of length/area/volume.

Specific

Most basic study is for a Poisson arrival process on a time line \([0, \infty)\) with arrival rate \(\lambda \).

\[
\begin{array}{cccc}
 \times & \times & \times & \times \\
 a & b & & t \\
\end{array}
\]

\((a, b] = \text{interval of time}\)

\((a, b] \cup (b, c] = (a, c] \)

\[
N(a, b] := \text{# of arrivals in } (a, b] \sim \text{Poisson} \left(\lambda \overbrace{(b-a)}^{\text{Length}} \right)
\]

\(N_t := N(0, t]. \ (N_t, t \geq 0) \) continuous time counting process:

- only jumps by 1
- stationary independent increments
- for \(0 \leq s \leq t \), \(N_t - N_s \overset{d}{=} N_{t-s} \overset{d}{=} \text{Poisson}(\lambda(t-s)) \)

Define

\[
T_r := W_1 + W_2 + \cdots + W_r = \inf \{ t : N_t = r \}, \quad 0 = T_0 < T_1 < T_2 \cdots \\
W_i := T_{i+1} - T_i
\]
• **Fact/Theorem**

\((N_t, t \leq 0)\) is a Poisson process with rate \(\lambda \iff W_1, W_2, W_3, \ldots\) is a sequence of iid \(\text{Exp}(\lambda)\).

\[
(W_1 > t) \iff (N_t = 0)
\]

\[
P(W_1 > t) = P(N_t = 0) = e^{-\lambda t}
\]

• **Fundamental constructions: Marked Poisson point process**

Assume space of marks is \([0,1]\) at first.

- Points arrive according to a \(\text{PP}(\lambda)\)
- Each point is assigned an independent uniform mark in \([0,1]\)

Let the space of marks be split into two subsets of length \(p\) and \(q\) with \(p+q = 1\).

Each point is a \(\boxtimes\) with probability \(p\) and \(\otimes\) with probability \(q\). Let

\[
\tilde{N}_\boxtimes(t) : \# \text{ of } \boxtimes \text{ up to } t
\]

\[
N_\otimes(t) : \# \text{ of } \otimes \text{ up to } t
\]
Lecture 21: Poisson Processes

Then

\[N_{\succeq}(t) \sim \text{Poisson}(\lambda pt) \]
\[N_{\ominus}(t) \sim \text{Poisson}(\lambda qt) \]
\[N(t) = N_{\succeq}(t) + N_{\ominus}(t) \]

These relations hold because of the \textit{Poisson thinning property}: if you have Poisson number of individuals with mean \(\mu \), then

- keep each individual with probability \(p \)
- discard each individual with probability \(q \)

Then \# kept and \# discarded are independent Poissons with means \(\mu p \) and \(\mu q \), respectively. Pushing this further, \((N_{\succeq}(t), t \geq 0)\) and \((N_{\ominus}(t), t \geq 0)\) are two independent homogeneous Poisson processes with rates \(\lambda p \) and \(\lambda q \) respectively.

Take a fixed region \((t, u)\) space, count the number of \((T_i, U_i)\) with \((T_i, U_i) \in R\). In the graph below, there are two. Since the sum of independent Poissons is Poisson, the number of \((T_i, U_i)\) has to be Poisson as well.

- Here we simply suppose the marks are uniform
- Generalize to marks which are independent identical with density \(f(x) \)
- \(T_1, T_2, \ldots \) are time arrivals of PP(\(\lambda \))
- \(X_1, X_2, \ldots \) are independent identical with \(\mathbb{P}(X_i \in dx) = f(x)dx \).
- Then \((T_1, X_1), (T_2, X_2), \ldots \) are the points of a Poisson process in \([0, \infty) \times \mathbb{R}\) with measure density \(\lambda dt f(x)dx \)
Here, $N_B \sim \text{Poisson}$ with mean $\int_B \lambda \, dt \int f(x) \, dx$.

- **Practical example** (Queueing model)
 - Customers arrive according to a PP(λ)
 - A customer arrives at time t and stays in the system for a random time interval with density $f(x)$.

Find a formula for the distribution of \# of customers in system at time t.

Mark each arrival by time spent in the system.

$$\mu = \int_0^t \lambda \, ds \int_{t-s}^\infty f(x) \, dx$$

$$= \int_0^t \lambda \, ds(1 - F(s)), \quad \text{where } F(s) = \int_0^s f(x) \, dx$$

Actual number is Poisson with mean μ calculated above.

- **Connection between PP and uniform order statistics**

Construction of a PP with rate λ on [0,1]

Step 1: Let $N_1 \sim \text{Poisson}(\lambda)$. This will be the total number of points in [0,1]
Step 2: Given $N_1 = n$, let U_1, \ldots, U_n be independent and uniform on $[0,1]$. Let the points of PP be at U_1, U_2, \ldots, U_n. Let

$$T_1 = \min_{1 \leq i \leq n} U_i$$

$$T_k = \min \{ U_i : U_i > T_{k-1}, 1 \leq i \leq n \} \text{ for } k > 1$$

We can only define T_1, T_2, \ldots, T_n ordered values of U_1, U_2, \ldots, U_n. Pick all the T_r's with $T_r \leq 1$ this way.

Create $(N_t, 0 \leq t \leq 1) : N_t = \# \{ i : U_i \leq t \} = \sum_{i=1}^{\infty} 1(N_1 \geq i, U_i \leq t)$

Claim: $(N_t, 0 \leq t \leq 1)$ is the usual PP(λ)

This means

- $N_t \sim$ Poisson(λt)
- $N_{t_1}, N_{t_2} - N_{t_1}, \ldots, N_{t_n} - N_{t_{n-1}}, N_1 - N_{t_n}$ are independent for $0 \leq t_1 \leq \cdots \leq t_n \leq 1$
- $N_t - N_s \sim$ Poisson($\lambda(t-s)$)

Why?

$N_t \sim$ Poisson(λt) by thinning.

Independence also by thinning: I can assign Poisson(N_1) counts into categories $(0, t_1], (t_1, t_2], \ldots, (t_n, 1]$ with probabilities $t_1, t_2 - t_1, \ldots, 1 - t_n$.

Poissonization of multinomials:

$$\mathbb{P}(N_{t_1} = n_1, N_{t_2} - N_{t_1} = n_2, \ldots, N_1 - N_{t_{k-1}} = n_k | n_1 + n_2 + \cdots + n_k = n)$$

$$= \mathbb{P}(N_1 = n_1 + \cdots + n_k) \mathbb{P}(N_{t_1} = n_1, N_{t_2} - N_{t_1} = n_2, \ldots, N_1 - N_{t_{k-1}} = n_k | N_1 = n_1 + \cdots + n_k)$$

$$= e^{-\lambda} \frac{\lambda^{n_1+\cdots+n_k}}{(n_1+\cdots+n_k)!} \left(\frac{n_1 + \cdots + n_k}{n_1, n_2, \ldots, n_k} \right) t_1^{n_1} (t_2 - t_1)^{n_2} \cdots (1 - t_{k-1})^{n_k}$$

$$= e^{-\lambda} \frac{(\lambda t_1)^{n_1}}{n_1!} e^{-\lambda(t_2-t_1)} \left(\frac{(\lambda(t_2 - t_1))^{n_2}}{n_2!} \right) \cdots e^{-\lambda(1-t_{k-1})} \left(\frac{(\lambda(1 - t_{k-1}))^{n_k}}{n_k!} \right)$$

Therefore $N_{t_1}, N_{t_2} - N_{t_1}, \ldots, N_{t_n} - N_{t_{n-1}}, N_1 - N_{t_n}$ are independent Poisson as claimed.