Markov Chains

- Discrete time
- Discrete (finite or countable) state space S
- Process $\{X_n\}$
- Homogenous transition probabilities
- matrix $P = \{P(i, j); i, j \in S\}$

$P(i, j)$, the $(i, j)^{th}$ entry of the matrix P, represents the probability of moving to state j given that the chain is currently in state i.

Markov Property:

$$P(X_{n+1} = i_{n+1}|X_n = i_n, \ldots, X_0 = i_0) = P(i_n, i_{n+1})$$

This means that the states of $X_{n-1} \ldots X_0$ don’t matter. The transition probabilities only depend on the current state of the process. So,

$$P(X_{n+1} = i_{n+1}|X_n = i_n, \ldots, X_0 = i_0) = P(X_{n+1} = i_{n+1}|X_n = i_n) = P(i_n, i_{n+1})$$

To calculate the probability of a path, multiply the desired transition probabilities:

$$P(X_0 = i_0, X_1 = i_1, X_2 = i_2, \ldots, X_n = i_n) = P(i_0, i_1) \cdot P(i_1, i_2) \cdots \cdot P(i_{n-1}, i_n)$$

Example: iid Sequence $\{X_n\}$, $P(X_n = j) = p(j)$, and $\sum_j p(j) = 1$.

$$P(i, j) = j.$$

Example: Random Walk. $S = \mathbb{Z}$ (integers), $X_n = i_0 + D_1 + D_2 + \ldots + D_n$, where D_i are iid, and $P(D_i = j) = p(j)$.

$$P(i, j) = p(j - i).$$

Example: Same random walk, but stops at 0.

$$P(i, j) = \begin{cases}
p(j - i) & \text{if } i \neq 0; \\
1 & \text{if } i = j = 0; \\
0 & \text{if } i = 0, j \neq 0.
\end{cases}$$
Example: $Y_0, Y_1, Y_2 \ldots$ iid. $P(Y = j) = p(j)$. $X_n = \max(Y_0, \ldots, Y_n)$.

$$P(i, j) = \begin{cases} p(j) & \text{if } i \leq j; \\ \sum_{k \leq i} p(k) & \text{if } i = j; \\ 0 & \text{if } i > j. \end{cases}$$

Matrix Properties:

$P(i, \cdot) = [P(i, j); \ j \in S]$, the i^{th} row of the matrix P, is a row vector. Each row of P is a probability distribution on the state-space S, representing the probabilities of transitions out of state i. Each row should sum to 1. ($\sum_{j \in S} P(i, j) = 1 \ \forall i$)

The column vectors $[P(\cdot, j); j \in S]$ represent the probability of moving into state j.

Use the notation $P_i =$ probability for a Markov Chain that started in state i ($X_0 = i$).

In our transition matrix notation, $P_i(X_1 = j) = P(i, j)$.

n-step transition probabilities:

Want to find $P_i(X_n = j)$ for $n = 1, 2, \ldots$

This is the probability that the Markov Chain is in state j after n steps, given that it started in state i. First, let $n = 2$.

$$P_i(X_2 = k) = \sum_{j \in S} P_i(X_1 = j, X_2 = k) = \sum_{j \in S} P(i, j)P(j, k).$$

This is simply matrix multiplication.

So, $P_i(X_2 = k) = P^2(i, k)$

We can generalize this fact for n-step probabilities, to get:

$$P_i(X_n = k) = P^n(i, k)$$

Where $P^n(i, k)$ is the $(i, k)^{th}$ entry of P^n, the transition matrix multiplied by itself n times. This is a handy formula, but as n gets large, P^n gets increasingly difficult and time-consuming to compute. This motivates theory for large values of n.

Suppose we have $X_0 \sim \mu$, where μ is a probability distribution on S, so $P(X_0 = i) =$
\(\mu(i)\) for \(i \in S\). We can find \(n^{th}\) step probabilities by conditioning on \(X_0\).

\[
P(X_n = j) = \sum_{i \in S} P(X_0 = i) \cdot P(X_n = j | X_0 = i)
= \sum_{i \in S} \mu(i) P^n(i, j)
= (\mu P^n)_j
= \text{the } j^{th} \text{ entry of } \mu P^n.
\]

Here, we are regarding the probability distribution \(\mu\) on \(S\) as a vector indexed by \(i \in S\).

So, we have \(X_1 \sim \mu P, X_2 \sim \mu P^2, \ldots, X_n \sim \mu P^n\).

Note: To compute the distribution of \(X_n\) for a particular \(\mu\), it is not necessary to find \(P^n(i, j)\) for all \(i, j, n\). In fact, there are very few examples where \(P^n(i, j)\) can be computed explicitly. Often, \(P\) has certain special initial distributions \(\mu\) so that computing \(\mu P^n\) is fairly simple.

Example: Death and Immigration Process

\(X_n = \) the number of individuals in the population at time (or generation) \(n\).

\(S = \{0, 1, 2, \ldots\}\)

Idea: between times \(n\) and \(n + 1\), each of the \(X_n\) individuals dies with probability \(p\), and the survivors contribute to generation \(X_{n+1}\). Also, immigrants arrive each generation, following a Poisson(\(\lambda\)) distribution.

Theory: What is the transition matrix, \(P\), for this process? To find it, we condition on the number of survivors to obtain:

\[
P(i, j) = \sum_{k=0}^{i \wedge j} \binom{i}{j} (1 - p)^k (p)^{i-k} \cdot \frac{e^{-\lambda} \lambda^{i-k}}{(i-k)!}
\]

Here, \(i \wedge j = \min\{i, j\}\). This formula cannot be simplified in any useful way, but we can analyze the behavior for large \(n\) using knowledge of the Poisson/Binomial relationship. We start by considering a special initial distribution for \(X_0\).

Let \(X_0 \sim \text{Poisson}(\lambda_0)\). Then the survivors of \(X_0\) have a Poisson(\(\lambda_0 q\)) distribution, where \(q = 1 - p\). Since the number of immigrants each generation follows a Poisson(\(\lambda\)) distribution, independent of the number of people currently in the population, we have \(X_1 \sim \text{Poisson}(\lambda_0 q + \lambda)\). We can repeat this logic to find:

\[
X_2 \sim \text{Poisson}((\lambda_0 q + \lambda)q + \lambda) = \text{Poisson}(\lambda_0 q^2 + \lambda q + \lambda), \text{ and}
\]
\[X_3 \sim \text{Poisson}(\lambda_0 q^2 + \lambda q + \lambda) = \text{Poisson}(\lambda_0 q^3 + \lambda q^2 + \lambda + \lambda) . \]

In general,

\[X_n \sim \text{Poisson}(\lambda_0 q^n + \lambda \sum_{k=0}^{n-1} q^k) . \]

In this formula, \(\lambda_0 q^n \) represents the survivors from the initial population, \(\lambda q^{n-1} \) represents the survivors from the first immigration, and so on, until \(\lambda q \) represents the survivors from the previous immigration, and \(\lambda \) represents the immigrants in the current generation.

Now we’ll look at what happens as \(n \) gets large.

As we let \(n \to \infty \):

\[\lambda_0 q^n \to 0, \quad \text{and} \quad \lambda_0 q^n + \lambda \sum_{k=0}^{n-1} q^k \to \frac{\lambda}{1-q} = \frac{\lambda}{p} . \]

So, no matter what \(\lambda_0 \), if \(X_0 \) has Poisson distribution with mean \(\lambda_0 \),

\[\lim_{n \to \infty} P(X_n = k) = \frac{e^{-\nu} \nu^k}{k!}, \quad \text{where} \quad \nu = \frac{\lambda}{1-q} = \frac{\lambda}{p} . \]

It is easy enough to show that this is true no matter what the distribution of \(X_0 \). The particular choice of initial distribution for \(X_0 \) that is Poisson with mean \(\lambda_0 = \nu \) gives an invariant (also called stationary, or equilibrium, or steady-state) distribution of \(X_0 \). With \(\lambda_0 = \nu \), we find that each \(X_n \) will follow a Poisson(\(\nu \)) distribution. This initial distribution \(\mu(i) = \frac{e^{-\nu} \nu^i}{i!} \) is special because it has the property that

\[\sum_{i \in S} \mu(i)P(i,j) = \mu(j) \text{ for all } j \in S. \]

Or, in matrix form, \(\mu P = \mu \). It can be shown that this \(\mu \) is the unique stationary probability distribution for this Markov Chain.