1 Prerequisites

Fubini’s Theorem.

2 Summary

This identity will be used to derive the inversion formula of characteristic function. See Section 2.3 of [1].

3 Parseval’s Identity

Lemma 1 (Parseval’s identity) X and Y are two real random variables with distributions \mathbb{P} and \mathbb{Q}.

$$\int \varphi_X(y) \mathbb{Q}(dy) = \int \varphi_Y(x) \mathbb{P}(dx). \quad (1)$$

Proof: Since $f(x, y) = e^{ixy}$ is integrable, we can apply Fubini’s Theorem,

$$\mathbb{E}e^{iXY} = \int \left[\int e^{i xy} \mathbb{P}(dx) \right] \mathbb{Q}(dy) = \int \varphi_X(y) \mathbb{Q}(dy) = \mathbb{E}\varphi_X(Y)$$

$$= \int \left[\int e^{i xy} \mathbb{Q}(dy) \right] \mathbb{P}(dx) = \int \varphi_Y(x) \mathbb{P}(dx) = \mathbb{E}\varphi_Y(X)$$

Parseval’s identity (1) is useful: on the left-hand side is the characteristic function φ_X, and on the right-hand side its probability measure \mathbb{P}. The two sides are linked by another random variable Y.
References