1 Prerequisites

tail σ-field, L^1 convergence of martingales

2 Summary

This topic gives the definition and convergence of reversed Martingales.

3 Reversed Martingales

Reversed martingales arise as $\mathbb{E}(X|G_n)$ where G_n is a *decreasing* rather than increasing sequence of σ—fields. Sometimes they are also called *backwards* martingales.

Example 1 If $G_n = \sigma(X_n, X_{n+1}, \ldots)$, then $G_n \downarrow T(X_1, X_2, \ldots)$.

In general, if $G_n \downarrow G_\infty := \bigcap_n G_n$ then for $X \in L^1$ the following convergence is true in L^1 and a.s. sense:

$$\mathbb{E}(X|G_n) \longrightarrow \mathbb{E}(X|G_\infty).$$ \hspace{1cm} (1)

The proof is by the upcrossing inequality.

4 Reference