1 Prerequisites

Borel-Cantelli Lemmas, Convergence of sequence of real numbers, random variables, probability measure.

2 Summary

Almost sure convergence is a measure theoretic driven mode of convergence. In simple terms a sequence of random variables X_n converges almost surely to a random variable X if that the set of ω such that $X_n(\omega) \not\to X(\omega)$ is a null set. This section explores the definition of almost sure convergence, some properties of almost sure convergence, and some methods for showing almost sure convergence.

3 Almost Sure Convergence

3.1 Definition

Definition 1 (Almost Sure Convergence) We say $X_n \xrightarrow{a.s.} X$ if $X_n(\omega) \to X(\omega)$ for all $\omega \not\in N$, with $\mathbb{P}(N) = 0$, or equivalently $\mathbb{P}(\omega : X_n(\omega) \to X(\omega) \text{ as } n \to \infty) = 1$.

3.2 Preliminaries for the Study of Almost Sure Convergence

Definition 2 Let q_n be some statement, true or false for each n. q_n occurs infinitely often or $(q_n \text{ i.o.})$ if for all n there is $m \geq n$ such that q_m is true, and q_n occurs eventually $(q_n \text{ ev.})$ if there exists n such that for all $m \geq n$, q_m is true. Now let q_n depend on ω, giving events

$$A_n = \{\omega : q_n(\omega) \text{ is true}\}.$$
There are now new events,

\[\{ A_n \text{ i.o.} \} = \{ \omega : \omega \in A_n \text{ i.o.} \} = \bigcap_n \bigcup_{m \geq n} A_m, \]

and

\[\{ A_n \text{ ev.} \} = \bigcup_n \bigcap_{m \geq n} A_m. \]

In analysis, \(1_{(A_n \text{ i.o.})} = \lim_{n \to \infty} \sup_{m \geq n} 1_{A_m} \) and \(1_{(A_n \text{ ev.})} = \lim_{n \to \infty} \inf_{m \geq n} 1_{A_m}. \)

Given a sequence of events \(A_n \) for each \(\omega \in \Omega \), consider \(1_{A_n(\omega)} \) as a function of \(n \), \(\omega \mapsto (1, 0, 0, 1, \ldots) \).

Proposition 1 (de Morgan) \(\{ A_n \text{ i.o.} \}^c = \{ A_n^c \text{ ev.} \} \) and \(\{ A_n \text{ ev.} \}^c = \{ A_n^c \text{ i.o.} \} \)

Proposition 2 \(X_n \overset{a.s.}{\to} X \iff \forall \epsilon > 0, \ P(|X_n - X| > \epsilon \text{ i.o.}) = 0. \)

Proof: \(X_n \to X \iff \forall \epsilon > 0, |X_n - X| < \epsilon \text{ ev.}, \) so

\[X_n \overset{a.s.}{\to} X \iff \forall \epsilon > 0, P(|X_n - X| \leq \epsilon \text{ ev.}) = 1 \]
\[\iff \forall \epsilon > 0, P(|X_n - X| > \epsilon \text{ i.o.}) = 0. \]

\[\blacksquare \]

3.3 Properties of Almost Sure Convergence

Because

\[X_n \to X \text{ a.s.} \iff X_n - X \to 0 \text{ a.s.}, \]

it is enough to prove for the case of convergence to 0.

Proposition 3 The following are equivalent:

1. \(X_n \overset{a.s.}{\to} 0 \)
2. \(\forall \epsilon > 0, \ P(|X_n| > \epsilon \text{ i.o.}) = 0 \)
3. \(M_n \overset{p}{\to} 0 \) where \(M_n := \sup_{n \leq k} |X_k| \)
4. \(\forall \epsilon_n \downarrow 0 : \ P(|X_n| > \epsilon_n \text{ i.o.}) = 0 \)
Note: “∀” in Proposition 4 cannot be replaced by “∃”. For example, Let $X_n = (1/\sqrt{n})U_n$, where U_1, U_2, \ldots are independent $U[0,1]$.

Take $\epsilon_n = 1/2/\sqrt{n}$. Then, $P(X_n > \epsilon_n) = P(U_n > 1/2) = 1/2$. So, $P(X_n > \epsilon_n \text{ i.o.}) = 1$.

But if we take $\epsilon_n = 1/\sqrt{n}$. Then, $P(X_n > \epsilon_n) = P(U_n > 1) = 0$.

Proof: (only for the equivalence of 1 and 3)

Suppose Proposition 1 holds. If $X_n(\omega) \to 0 \text{ a.s.}$, then $\sup_{n \leq k} |X_k(\omega)| \to 0 \text{ a.s.}$ But this implies that $M_n \to 0 \text{ a.s.}$ Thus, $M_n \xrightarrow{p} 0$.

Conversely, if $M_n \downarrow$ as $n \uparrow$, then we know in advance that M_n has a almost-surely-limit in $[0, \infty]$.

Lemma 1 If $X_n \xrightarrow{p} X$, then there exists a subsequence n_k such that $X_{n_k} \to X \text{ a.s.}$

Proof: It is enough to show that there exists $\epsilon_k \downarrow 0$ such that $\sum_k P(|X_{n_k} - X| > \epsilon_k) < \infty$. We can take $\epsilon_k = 1/k$ and choose n_k so that $P(|X_{n_k} - X| > 1/k) \leq 1/2^k$. Then, $\sum_k P(|X_{n_k} - X| > \epsilon_k) < \infty$, and by Borel-Cantelli Lemma I we can conclude that $X_{n_k} \to X \text{ a.s.}$

4 References