1 Prerequisites

Basic measure theory, random variables.

2 Summary

This is a brief introduction to real random variables, extended real random variables and simple real random variables. Extended random variables enjoy extended cumulative distribution functions, which can be used to construct a compact space of distribution functions. Simple real random variable approximation, working with monotone class theorem, is a typical method in proving many equalities.

3 Real Random Variables

3.1 Checking Measurability

This theorem about checking measurability will save effort by reducing the verification to a smaller class of sets.

Theorem 1 Let (Ω, \mathcal{F}) be a measurable space and $X : \Omega \to S$. If S has the σ-field $\sigma(\mathcal{A})$ for an arbitrary collection of sets \mathcal{A}, then X is measurable iff $(X \in \mathcal{A}) \in \mathcal{F}$ for $A \in \mathcal{A}$.
Proof: We first prove the reverse direction. Since \(\{ X \in A \} = \{ \omega : X(\omega) \in A \} = X^{-1}(A) \), we have

\[
X^{-1}(A^c) = (X^{-1}(A))^c
\]

\[
X^{-1} \left(\bigcup_i A_i \right) = \bigcup_i X^{-1}(A_i)
\]

\[
X^{-1} \left(\bigcap_i A_i \right) = \bigcap_i X^{-1}(A_i)
\]

Thus, \(X^{-1}(\sigma(A)) = \sigma(X^{-1}(A)) \).

To prove the forward direction, note that the collection \(\mathcal{C} \) of subsets of \(S \) given by
\[
\mathcal{C} = \{ B \subset S : X^{-1}(B) \in \mathcal{F} \}
\]
is a \(\sigma \)-field which contains \(\mathcal{A} \) and hence \(\sigma(\mathcal{A}) \) which is the \(\sigma \)-field generated by \(\mathcal{A} \).

Similarly, if \(S \) has the \(\sigma \)-field \(\sigma(Y_i, i \in I) \), \(X \) is measurable iff each \(Y_i \circ X \) is measurable.

Fact: The composition of two measurable maps is measurable.

3.2 Real Random Variables and Extended Real Random Variables

Let \(S \) be a topological space. The *Borel \(\sigma \)-field* on \(S \), denoted by \(\mathcal{B}(S) \), is the \(\sigma \)-field generated by open subsets of \(S \). If \(f : S \to T \) is a continuous function, then \(f \) is measurable from \((S, \mathcal{B}(S))\) to \((T, \mathcal{B}(T))\) by the previous theorem.

If \((S, S) = (\mathbb{R}, \mathcal{R})\), then some possible choices of \(\mathcal{A} \) are \(\{(-\infty, x] : x \in \mathbb{R}\} \) or \(\{(-\infty, x) : x \in \mathbb{Q}\} \) where \(\mathbb{Q} \) = the rationals.

For the real line \(\mathbb{R} = (-\infty, \infty) \) and extended real line \(\bar{\mathbb{R}} = [-\infty, \infty] \), the Borel \(\sigma \)-fields can be defined as follows.

\[
\mathcal{B}(\mathbb{R}) = \sigma\{(-\infty, x] : x \in \mathbb{R}\}
\]

\[
\mathcal{B}(\bar{\mathbb{R}}) = \sigma\{[-\infty, x] : x \in \bar{\mathbb{R}}\}
\]

Definition 1 (Real Random Variable) Let \((\Omega, \mathcal{F})\) be a measurable space. A real random variable (r.r.v.) is a measurable map from \(\Omega \) to \(\mathbb{R} \).

Thus a function \(X \) with range \(\mathbb{R} \) is a r.v. iff \((X \leq x) \in \mathcal{F}\) for all \(x \in \mathbb{R} \) (by theorem 1). Similarly, extended real random variables (e.r.r.v.) can be defined on range \(\bar{\mathbb{R}} \).
Operations on real numbers are performed pointwise on real-valued functions, e.g.,
\[Z = X + Y \] means \[Z(\omega) = X(\omega) + Y(\omega) \] for all \(\omega \in \Omega \)
and \(Z = \lim_n Z_n \) means \(Z(\omega) = \lim_n Z_n(\omega) \) for all \(\omega \in \Omega \).

Notation for real numbers:
- \(x \vee y = \max(x, y) \)
- \(x \wedge y = \min(x, y) \)
- \(x^+ = x \vee 0 \)
- \(x^- = -(x \wedge 0) \)
- \(|x| = x^+ + x^- \)

Theorem 2 If \(X_1, X_2, \ldots \) are e.r.r.v.'s on \((\Omega, \mathcal{F})\), then they are closed under all limiting operations, i.e.,
\[\inf_n X_n, \sup_n X_n, \liminf_n X_n, \limsup_n X_n \]
are also e.r.r.v.

Proof: Since the infimum of a sequence is \(< a \) if and only if some term is \(< a \), we have
\[\left\{ \inf_n X_n < a \right\} = \bigcup_n \{ X_n < a \} \in \mathcal{F} \]
The proof for supremum follows similarly.

For limit inferior of \(X_n \), we have
\[\liminf_n X_n := \sup_n \{ \inf_m X_m \} \]
Now note that \(Y_n = \inf_{m \geq n} X_m \) is an e.r.r.v. for each \(n \) and so \(\sup_n Y_n \) is also an e.r.r.v. The proof for limit superior follows similarly.

From the above proof we see that
\[\Omega_0 = \left\{ \omega : \lim_{n \to \infty} X_n \text{ exists} \right\} = \left\{ \omega : \lim_{n \to \infty} \sup X_n - \lim_{n \to \infty} \inf X_n = 0 \right\} \]
is a measurable set. If \(X_n(\omega) \) converges for almost all \(\omega \), i.e., \(\mathbb{P}(\Omega_0) = 1 \), we say that \(X_n \) **converges almost surely** to a limit \(X \) which is defined on \(\Omega_0 \). \(X \) can be defined arbitrarily on \(\Omega \setminus \Omega_0 \), with different authors preferring different conventions.

3.3 Simple Real Random Variables

Definition 2 (Simple Random Variable) \(X \) is a simple random variable iff \(X \) is a finite linear combination of indicators, i.e., \(X \) can be expressed as \(X(\omega) = \sum_{i=1}^n c_i 1_{A_i}(\omega) \) where \(c_i \in \mathbb{R} \) and \(A_i \in \mathcal{F} \). A simple r.v. can only take finitely many values.
Theorem 3 Every real r.v. \(X \) is a pointwise limit of a sequence of simple r.v.’s, which can be taken to be increasing if \(X \geq 0 \).

Proof: For \(X \geq 0 \) let,

\[
X_n = \begin{cases}
\frac{k-1}{2^n} & \text{on } \{ \frac{k-1}{2^n} \leq X < \frac{k}{2^n} \}, 0 \leq k \leq n2^n \\
0 & \text{on } \{ X \geq n \}
\end{cases}
\]

Then \(X_n \uparrow X \). For general \(X \) use the decomposition \(X = X^+ - X^- \). ■

Corollary 1 Let \(X \) and \(Y \) be real valued r.v.’s. Then so are \(XY, X + Y, X - Y, \min(X,Y), \max(X,Y) \).

Proof: Consider \(X_n \uparrow X \) and \(Y_n \uparrow Y \). This implies \(X_n Y_n \uparrow XY \). Similarly, use the previous theorem to pass from simple case to the more general cases. ■

4 References