We begin this course with the theory of Markov chains. Let \((S, S)\), be any measurable space. Usually \(S\) is a finite set, a countable set, or \(\mathbb{R}^n\). For the most part we will confine our attention to discrete time processes. In the continuous time setting, the counterpart to Markov chains are known as Markov processes.

1.1 Markov Property and Existence

Definition 1.1 A sequence of random variables \((X_n)\) is called a **Markov chain** (with respect to the induced filtration \(\mathcal{F}_n = \sigma(X_1, \ldots, X_n)\)) if the “past” and “future” of the process are conditionally independent given the “present”, i.e. for every \(n \in \mathbb{N}\), \(\sigma(X_k : k < n)\) and \(\sigma(X_k : k > n)\) are conditionally independent given \(\sigma(X_n)\).

Example 1.2 The standard random walk is a Markov chain.

Definition 1.3 A function \(p : S \times S \to \mathbb{R}\) is called a **Markov kernel** if

1) For each \(x \in S\), the mapping \(A \to p(x, A)\) is a probability distribution on \((S, S)\).

2) For each \(A \in S\), the mapping \(x \to p(x, A)\) is an \(S\)-measurable function.

Definition 1.4 The Markov kernel \(p_n\) is called a **transition probability function**, for a Markov chain \((X_n)\) if

\[
P(X_{n+1} \in B | \mathcal{F}_n) = p_n(X_n, B)
\]

for each \(B \in S\).

In other words, \(p_n(x, B)\) is the probability that the next step in the chain lies in \(B\) given that the current state is \(x\). If \(p_n\) doesn’t depend on \(n\), we call \(p\) a time–homogeneous transition probability function. Henceforth, in these notes we assume that \((X_n)\) has the homogeneous transition probability function \(p\).

Theorem 1.5 (Ionescu-Tulcea) Given a measurable space \((S, S)\) with distribution \(\mu\), and a transition probability function \(p\), there exists a Markov chain on the space and its distribution, \(P_\mu\), is unique on \((S^\infty, S^\infty)\). Here \(S^\infty = \times S \times \ldots\) is the product space, and \(S^\infty\) is the product \(\sigma\)-field, generated by finite–dimensional projections.

It often convenient to suppose that \((X_n)\) is a coordinate process. That is, we let \(\Omega = S^\infty\), so for \(w \in \Omega = \{(w_0, w_1, \ldots) : w_i \in S\}\) we may set

\[X_n(w) = w_n.\]
Proof Sketch: Under regularity assumptions on S this is a consequence of Kolmogorov’s Extension Theorem:

Notice that if we define,

$$
\mathbb{P}_\mu(X_0 \in A_0) = \mu(A_0)
$$

$$
\mathbb{P}_\mu(X_0 \in A_0, X_1 \in A_1) = \int_{A_0} \mu(dx_0)p(x_0, A_1)
$$

$$
\mathbb{P}_\mu(X_0 \in A_0, X_1 \in A_1, X_2 \in A_2) = \int_{A_0} \mu(dx_0) \int_{A_1} p(x_0, dx_1)p(x_1, A_2)
$$

and so on, then we have a sequence of distributions on $S, S \times S, \ldots$ that is consistent in the sense necessary for Kolmogorov’s Extension Theorem. Measure theory then tells us that there exists a distribution on $S \times S \times \ldots$ such that the first n coordinates are distributed as above on S^n.

1.2 Some General Facts

To find the distribution of X_n we first regard the Markov kernel, $p(\cdot, \cdot)$ as an operator on measures,

$$
p : \mu \mapsto \mu p, \quad \text{where} \quad \mu p(B) := \int \mu(dx)p(x, B)
$$

Thus μp is a new probability distribution. It is the distribution of X_1 for a Markov chain, (X_0, X_1, \ldots), with $X_0 \sim \mu$ and transition probability function, p. Similarly,

$$
\mu p^n(B) = \int \mu(dx)p^n(x, B) = \text{distribution of } X_n
$$

where $p^n(x, B) = \mathbb{P}_\mu(X_n \in B | X_0 = x)$.

When S is countable we typically denote the elements of S by i, j, k, etc. In this case we define the transition matrix, P, by

$$
P_{ij} = p(i, \{j\})
$$

the probability of transitioning from state i to state j given that the current position is i. We can also identify the initial distribution, μ with a row vector,

$$
\mu_i = \mu(\{i\})
$$

Clearly the matrix P must satisfy, $\sum_j P_{ij} = 1$, for each $i \in S$.

Applying this notation to the discussion at the beginning of the section we conclude that if (X_n) is a Markov chain with countable state space transition matrix P then

$$
\mathbb{P}_\mu(X_n = j | X_0 = i) = P^n_{ij}
$$

and if $X_0 \sim \mu$, and P^n denotes the nth matrix power of P, then

$$
\mu P^n = \text{distribution of } X_n.
$$

On a general state space (S, \mathcal{S}) we can also regard p as an operator on a suitable class of functions, say bounded measurable or non-negative measurable $f : S \to \mathbb{R}$ by

$$
p : f \mapsto pf, \quad \text{where} \quad pf(x) := \int_S f(y)p(x, dy).
$$
Claim 1.6 For all \((x_i)_{i=1}^n \in S^n\),
\[
 pf(x_n) = E_\mu[f(X_{n+1})|X_n = x_n]
 = E_\mu[f(X_{n+1})|X_n = x_n, X_{n-1} = x_{n-1}, \ldots, X_0 = x_0]
\]

Proof: See [1, Durrett, 5.1].

Similarly we have that
\[
 p^m f(x_n) = E_\mu[f(X_{n+m})|X_n = x_n]
\]

In the case that \(S\) is countable the action of \(p\) on \(f\) can again be interpreted as a matrix vector operation, \(Pf\).

Now consider those functions \(h\) such that \(ph = h\). These functions are called harmonic functions because of a close relationship with the harmonic functions of Analysis. Applying the result of the claim, if \(h\) is harmonic then
\[
 E_\mu[h(X_{n+1})|X_n = x_n] = ph(x_n) = h(x_n)
\]

Thus for any initial distribution \(\mu\), \((h(X_n))\) is an \(\mathcal{F}_n\)-martingale.

Example 1.7 Let \(B\) be the set of all absorbing states, meaning that \(p(b,b) = 1\) for all \(b \in B\). Call \(B\) the boundary of the state space \(S\). Let \(A\) be some subset of \(B\) and define
\[
 h_A(x) = P_\mu(X_n \in A \text{ eventually}).
\]

Then (see [1, Durrett 5.2, Exercise 2.6].)

1) \(h_A\) is a \(p\)-harmonic function.

2) if \(P_\mu(X_n \in B \text{ eventually}) = 1\) then \(h_A\) is the unique \(p\)-harmonic function whose boundary values are given by \(1_A\), the indicator function of \(A\).

References